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TWO-DIMENSIONAL DISCHARGE INTO VACUUM OF A MOVING INHOMOGENEOUS GAS* 

S.P. BAUTIN 

hue-dimensional nonisotropic flows of perfect polytropic gas are considered, which 
0CCuI when the Smooth surface that separates the given flow of gas from vacuum ie 
instantly removed. Solution of the problem of such discontinuity disintegration is 
constructed in the space of special variables in the form of convergent character- 
istic series. On the basis of investigation of the series convergence region it is 
proved that gas particles at the boundary with vacuum continue moving for some time 
each along its straight path at its constant velocity. Next, the case of continu- 
ous contiguity of gas through the smooth free surface to vacuum is considered. It 
is shown that up to the instant of occurrence of an infinite gradient at the free 
boundary, or up to the instant of local gas focusing, the derived law of motion of 
the free boundary remains valid. This may be used as the boundary condition in 
numerical solution of problems on discharge of perfect gas into vacuum. A system 
of transport equations is obtained and investigated, which defines the behavior of 
the gradient of gas dynamic parameters at the boundary with vacuum. 

1. Let some cylindrical surface r be specified at instant of time t = 0 in the space (x. 
Y? z) * Its generatrices are parallel to axis Oz and the directrix in the plane xOY is spec- 

ified parametrically I = s(E),Y = y(f), where 5 is a parameter, and the functions themselves 
are assumed locally analytic in some neighborhood of point (zo = r (Ll)? Yo = Y (E,)). On one 
sideofthe surface r is the vacuum, and on the other there are some locally analytic distribu- 
tion of parameters of a perfect polytropic gas, viz, the gas velocity LJ = uo (I, Y) , its 
entropy S = S,(z.Y), u = o,(s,y) some functions related to density p by the relation lS= 
p(v--l)iz and (y > 1) the polytropic exponent of gas. The specified distributions are such that 
on surface r the speed of sound c = Sa is greater than zero, and the projection of vector 

UO 
on the Oz axis is zero. At instant t = 0 the surface r momentarily disintegrates, and 

at t>O the discharge of gas into vacuum takes place. We assume that as the result of dis- 
continuity disintegration the two-dimensional flow is fairly smooth, and is bounded on one 
side by the surface of a weak discontinuity r1 and on the other, by the free surface ru. 

The law of motion of surface r1 and the gasdynamic parameters on it, by virtue of 
the theorem of Cauchy-Kovalevskaia, are uniquely determined by the distribution at t=o /l/. 
The position of the free surface rn which is the boundary between the gas and vacuum (a Irs = 0). 
atvarious instants of time is notknowngenerally, a priori. As the flow is two-dimensional, 
we shall identify subsequently the surfaces r, ro, and r1 by respective curves in the plane 
xoy. 

Problems close to the one stated here were considered earlier. In the flow of homogene- 
ousgas from a slanted wall the inhomogeneous part of the flow was contructed in /2/ for spec- 
ial values of p in the class of self-similar double waves. Two- and three-dimensional flows 
of gas were constructed in /3/, using characteristic series, and in /4/ two-dimensional flows 
of gas were obtained in some one-sided neighborhood of I'*. On the other side of the weak 
discontinuity surface, either a homogeneous quiescence /3/ or a region of simple wave /4/were 
obtained. Investigation of several terms of series for an approximate description of flow in 
the free boundary neighborhood led to a flow close to one-dimensional /3/, and in /4/ to a 
flow close to the constructed in /2/. The question whether the free boundary is included in 
the series convergence region was not investigated in /3,4/. The disintegration of an arbit- 
rary discontinuity on a curvilinear surface was considered in /5/, when on both sides of the 
discontinuity surface the density is greater than zero. A flow orginates at the collapse of 
one-dimensional cavity was investigated in /6/. It was proved that when f<Y<3 PO moves 

for some time OQt<t* at constant velocity, while time t, coincides with the instant of an 

infinite gradient formation on I',,. The transport equation that controls the behavior of gas 
parameter gradients on I', is investigated. 

The present paper extends the results of /6/ to the case of arbitrary two-dimensional 
nonisotropic flows. 
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The motion of a perfect polytropic gas is defined by the system of equations /7/ 

Y--i ct f U grad CI + 2 odivl;=O _ 

fjt+rotU x U+$gr~dU~+~grad02+~gradS’=O 

St + U grad S = 0 

The equation of state is taken in the form p = A (s)pv/y, p is the pressure and A (s) 30. 
In the considered here system and subsequently the entropy is denoted by m). 

In the system we pass from variables z,Y to n,%, and from each point of curve 1' draw 

a straight line whose directional vector is 

u*= uo+ & Soaon 

where (II = n(x,y) is the unit vector of the normal to r. These lines are taken as the co- 
ordinate lines 5 = const. As the second coordinate lines we take the curves orthogonal to the 
constructed bundle of straight lines q = COIM~. In particular the curve that passes through 
point (z,,,yO) is taken as the axis V) = 0. The one-to-one relation of such transition from 

(5, Y) to (11, E) is ensured by the condition U,n#O in which vectors U,are not tangent to 
line r. Subsequently this condition will be taken as satisfied. The possibility of passing 
from (s,Y) to (T), %) is ensured by the existence of a unique locally analytic solution of the 
respective Cauchy problem for the ordinary differential equation that defines the curve T) = 0. 
After such substitution, the input system becomes /7/ 

(1.1) 

“t-~uIB(%)v-UE]+LLU~+~S~uuq+~u’SS~~O 

*t ++ f u [Hz*, + B {E) v] + L’V~ + * S%U~ + f uw+} = 0 

&+uS,+&+0, Hz= A (E) + tlB (%I 

A i%) = ~-JL’~(%) + ~2’~ (%)I”‘, B (%I = In”t%) w’(%) - R"(%)(PL'(%)I/A~(%) 

where u,u are projections of vector U on the axis 17, %, respectively, Using 'PI (%!I 92 (%) I 
the curve 11 = 0 is defined parametrically z = '01 (%)* Y = 92 (E). 

Note that ~4 (3 # 0, i.e., kor Y,) is not a singular point of line 11 = 0. In the new 
system of coordinates curve r is specified by some locally analytic function r = rloo (E), u* = 
{G (EL 019 and the second component of vector U, [r is equal 

L?o = --&&uOCos("r)=& Soao # 

4 (E) = [q:(E) + 4' (%)V, 4, (E) = A (%)+ rloo (EP (E) 

where T is the unit vector tangent to line q = const, that passes through point (x(%), y (5)) of 
line r. 

Since the unknown solution at the initial instant of time has unbounded derivatives with 
respect to *I, we make one more substitution of variables. AS independent variables we take 
(5, %, 1, and q, U.V, s as the unknown functions. The Jacobian of such transformationis J = Q. 

It is zero, if in space (I), %, t) an infinite gradient occurs and, then, in space (a, %, t) the 
solution has no singularity. The opposite takes place when J=oo: in space (a, 5, 0 the 
solution has an infinite gradient, and singularity in space (q, %, t) is absent. System (1.1) 
becomes 
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Theorem 1. When 0 -s t Q to, to > 0 I then in some neighborhood of line r1 there exists 
a unique locally analytic solution of system (1 .2) that corresponds to the input problem of 
discontinuity disintegration. 

To prove it, theorem 1 is reduced to the respective analog of the Cauchy-Kovalevskaia 
theorem /8/. In this case the Cauchy data for system (1.2) are specified on the character- 
istic of rl. To ensure the uniquenessof solution of such problem it is necessary /8/ to 
specify one boundary condition, since rr is a characteristic of multiplicity of one (c /r,>O). 
This condition is provided by the relation n (0, CT, 5) = ‘loo($). Indeed, if in the region of 
flow obtained as the result of discontinuty disintegration we consider surface q = q(t, CT, CZ), 
then as t-i-0 that surface , irrespective of the dependence on o,becomes surface 11 = Q,,,(E). 

To define more precisely the region of existence of solution of that characteristic 
problem of Cauchy it is necessary that it is represented in the foml of series 

f = {q, u, v, 9 (1.3) 

The coefficients f, are obtained, as in /6/, in a recurrent manner in successive dif- 
ferentiation of system (1.2) with respect to t. Then ukr vk, S, are obtained from the solu- 
tion of a system of ordinary differential equations in which 5 is a parameter. Then II~-+~ is 
found from an algebraic equation. These systems and equations are not presented here in view 
of their unwieldiness. The result is of the form 

vo = 5 so0 ce, $$y a + voo (5) 

so = so0 (E), 
1 

rl1=u0- A,(E) 
ii 

& Soo (E) tbb 6) +A2 (5, ] x 

2- + voo (8 Iloo’ (f)) A.(C) 

Uk = UkO (5) z+ + qoo’ (5) Z’hO (5) G + Flh. 

vk = - YOO' (8) ZLkO (5) $ + vi.0 (5) uzka + Fah. 

s, = Sk0 (5) u*a c FSh, qkrl = F,,, Y-t1 a=m 

Functions Fik(l <i <4) depend in a known manner on IS, E, and on preceding coefficients 
of series (1.3) (in view of its unwieldiness the specific form of Fib. is also not presented). 
The arbitrary functions ufio, vrO, Sk,, and X: >O appear here, as the result of integration of 
systems of differential equations. Tney are to be selected so as to match series (1.3) with 
the gasdynamic parameters on rl. Since 0 II.1 > 0, all Wkn7 vkO, S po are uniquely determined. 
In particular, v00 (5) = 0. S", (E.) = S" (s. Y) Ir. 

Lemma. When 1 <y <3, the coefficients Us, cf, Sh-, Q+, for k > 1 contain the multi- 
plier (J andare polynomials of s, olno,cs~, 0 <h < Ask, A:, = const> 0. 'The coefficients of pol‘f- 
nomials depend on E. When y>s, the coefficients of series contain u-1, Inu. 

Proof of the lemma issimilarto the respective proof in /6/. 
The lemma is used for proving the following theorem. 

Theorem 2. When i<y<3 and u-<t<tt,, the convergence region of series (1.3) 

and of I,, f,, Ek is extended over the whole region from 1‘, to r. inclusive. The position of 

r,, is defined by the relation n =nuo(E) f u*(@, and on the surface i'o we have u = u, (E). 
s = S", (E). 

Thus each particle of gas on the free surface, afterthe discontinuity disintegration, 

maintains its entropy, and moves along its straight line at its constant velocity, aS if at 
each point of surface I? its own disintegration of a plane discontinuity had taken place. 

Series (1.3) is a functional series that is analytic only in some neighborhood of sur- 
face r,: for any y> Z an m can be found such that the series for the derivative rimfi3um 

contain U-’ and Ino. As (3- 0, the series for such derivative is certainly divergent, and 
the next following term is greater than the preceding ones. When l<y<.?, this mis great- 

er than unity, and the series required for satisfying system (1.2) with (5 = 0 are convergent. 
When y=3m= I or v> .3 and m = 0, and on the basis series consideration it is impossible 
to make any exact conclusions about the motion of 1',. In the case of cyiindrical and spher- 

ical symmetry we have the alternatives: either ncIr.= 0 and I?,, is accelerated or rlo lra + 0 
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and TO moves at constant velocity. Hence, if the flow resulting from 'discontinuity disinte- 

gration satisfies the relation 

7jul (0, 0) = qto (0, 0) 

then for all y> 1 the surface rO moves for some time at constant velocity 

u, =Uo(so) * *so (so)00 (4 

where the upper sign corresponds to a dispersion of gas, the lower, to collapse. In proving 

this fact only the value of rh(a, 0) is used, the total series are unnecessary. 

2. Having obtained the solution of the problem of discontinuity disintegrationatsmall 

t, we shall clarify up to what instants of &me the obtained law of propagation of PO is 
valid. For this in system (1.1) instead of the variable q we take the variable x=ri- 
7joo(%) - u* (5) t, i.e. the free surface rO is taken as the new coordinate plane. 

If at t=to in some neighborhood of surface x=0 a locally analytic distribution of 
gas parameters is specified 

c 00, x9 %) = co1 (XV E), UOl(O, %) = 0 (2.1) 

u @W XT E) = uo, (5, %), u,, (k E) = u, (5) 

8 (to. x+ E) = so, (xv %I, s,, (0, %I =s 00 (5) 

then the obtained Cauchy problem for system (1.1) in variables x, %, t has in conformity 
with the Cauchy-Kovalevskaia theorem a unique locally analytical solution. To clarify the 
law of motion of rO we consider, as in /6/, the Cauchy problem with data on the surface x= 0: 
a = 0, u = u, (%), s = so0 (%). This is the characteristic Cauchy problem which at to-< t< t* 
has a unique locally analytic solution with specified supplementary condition /S/. Such con- 
ditions for the considered here problem are relations (2.1). From the uniqueness of these 
solutions of the Cauchy problem follows their agreement. Hence for to< t< t*r, moves in 
conformity with the same law q=rjoo(%) + u*(%)t. 

As in /6/, the investigation of the existence of region of solution of the character- 
istic Cauchy problem with data on surface x=0 leads to the following. The instant of time 
t* is the instant of appearance of solution singularities in the system of transport equa- 
tions 

011 i- I(y + 1) z +(v - 1) Y,la1/2 = 0 (2.2) 

yt + zu, + u,,' (%) q/H,, + X = 0 

vlt + (2 + YJ v1 - Y,XIH,, = 0 
S,t + .=, + So,’ (%) q/H,, = 0 

where 

Z = ~1 - Y,vJH,,, X = 2S,,% (E) Ol’/(Y - 1) 

Y, = ~1 (f) B (EM,,, y, = qo; (E) + u*'(E) t 

H,, = A (E) + boo(%) + G (%I tlB t%) 

System (2.2) defines the behavior of the first derivative of gasdynamic parameters on 
surface TO 

g, (t, f) = @.iBx Ix-o, 6 = {a, 4 VI S) 

and is, in fact, a system ofordinary differential equations in which % is a parameter. Note 
that a/ax = dial). The initial data for system (2.2) are taken from conditions (2.1), and the 
obtained Cauchy problem has a unique locally analytic solution. 

The first three equations of system (2.2) may be solved independently of the last one 
which is linear in s,. Hence the anisentropy of flow does not affect the instant of singular- 
ity formation on surface ro. Introducing the new unknown function 

1 

PI= cxp u1 dt, 
s 
1. 

y? =exp [- i 2 dt] 
1. 

we eliminate c1 form the second and third equations, i.e. obtain a system of two equations 
for !,1. vz. 

When the gas is homogeneous and at rest at t = 0 (i.e. the non-one-dimensionality ofthe 
generated flow is due only to the non-one-dimensionality of surface r), the solution of 
system (2.2) reduces to the solution of the single ordinary differential equation 

with initial conditions 

II * 3 (%) f/(y - l)P-‘)yIYy,~t = c, (%) 
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y, (tot E;) = 1, Y,t (to, E) = ~uo1/dxlx-0 
This equation is in fact a transport equation for the case of cylindrical symmetry ,'6,. 

Functions ai,v,,s, are explicitly expressed in terms of yl. The sign in front of k(t), be 
curvature of line I? at point E, is selected depending on whether the radius of curvature 
of line r0 increases or diminishes with the increase of t. 

The infinite gradient first appears on r,, on that ray 5 = E, on which at t = (1 the 
maximum curvature is attained, under the condition that the curvature of r0 on that ray in- 

creases as t increases. For y<(y~ = 2 the instant t, = (v -1)/[2k(&)! is the instant of 
focusing of the free boundary part that adjoins the ray E = &, i.e. the instant of lens 
formation on ro. Owing to the focusing of gas in the lens corner, the absolute velocity at 
that point becomes greater than 1 u* (E,) !. When y> y* the infinite gradient arises on the 
same ray g = &, but this takes place prior to the instant of lens formation, i.e. I?" is 
still smooth. The dependence tt = t*(y) is given in /6/. 

Of course, after the formation of singularities mentioned above, the 'use of the derived 
solutions in the neighborhood of such points is no longer possible, and it is necessary to 
solve new problems. These problems in one-dimensional approximation are: that of formation 
at the center of symmetry of a shock wave and its motion away from that center; the second 
problem is eithertoconstruct a flow with infinite gradient on rO, or solve a new one of 
discontinuity disintegration. If the radius of curvature at all points of To increases with 
increasing t, then the infinite gradient first occurs in the flow on rl at the Lnstant of 
its local focusing. 

The solutions constructed in explicit form, thus, solve the question of stability of 
the respective non-unidimensional flow. For a given inhomogeneous distribution of gas para- 
meters at t=O and a non-unidimensional r it is possible to indicate beforehand what and 
where are the singularities that arise in the flow, and what are the qualitative effects to 
which they lead. 

The proved theorems at large t are valid only in certain neighborhoods of surfaces ru 
and r,. They are not, however, taking into account the possibility of singularities forma- 
tion in the flow region middle part. Weak discontinuities cannot occur there, and it is 
necessary to watch for the appearance in the middle part of the flow region of infinite grad- 
ients. If a shock wave arrives on the surface of I?,,, then as proved, this new discontinuity 
disintegrates with constant velocity along the new rays (generally for each ray its proper 
velocity). Further motion of r0 and the values of gasdynamic parameters on it are uniquely 
determined by the arriving discontinuity, and this may be used as the boundary condition for 
the numerical solution of problems of perfect gas discharge into vacuum. 
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